Research Articles

22.“Genetically-Targeted Endocannabinoid Uncaging Enables Optical Control of GPR55 in Pancreatic β-cells” Tobias, J.A.; Rajic, G.; Viray, A.E.G.; Icka-Araki, D.; Frank, J.A.* Chem. Sci. 2021, 12, 13506-13512. DOI: 10.1039/D1SC02527A
21.“Structural Diversity of Photoswitchable Sphingolipids for Optodynamic Control of Lipid Raft Microdomains” Hartrampf, N.; Leitão, S.M.; Winter, N.; Toombs-Ruane, H.; Frank, J.A.; Schwille, P.; Trauner, D.*; Franquelim, H.G.* bioRxiv, 2021. DOI: 10.11.463883
20.“Optical Control of Cannabinoid Receptor 2-Mediated Ca2+ Release Enabled By Synthesis of Photoswitchable Probes” Sarott, R.C.; Viray, A.E.G.; Pfaff, P.; Sadybekov, A.; Rajic, G.; Katrich, V.; Carreira, E.M.; Frank, J.A., J. Am. Chem. Soc. 2021, 143 (2), 746-743. DOI: 10.1021/jacs.0c08926
19.In Vivo Photopharmacology Enabled by Multifunctional Fibers” Frank, J.A.#; Antonini, M-J.#; Chiang, P-H.; Canales, A.; Konrad, D.; Garwood, I.; Rajic, G.; Koehler, F.; Fink, Y.; Anikeeva, P.* ACS Chem. Neurosci, 2020, 11 (22), 3802-3813. DOI: 10.1021/acschemneuro.0c00577
18.“Photolipid Bilayer Permeability is Controlled by Transient Pore Formation” Pritzl, S.D.#; Urban, P.#; Prasselsberger, A.; Konrad, D.B.; Frank, J.A.; Trauner, D.; Lohmüller, T. Langmuir, 2020, 36 (45), 13509-13515. DOI: 0.1021/acs.langmuir.0c02229
17.“Irradiation-Induced Lipid Mixing Implies a Causal Role of Lipid Splay in Membrane Fusion” Scheidt, H.A.#; Kalokaj, K.#; Konrad, D.B.; Frank, J.A.; Trauner, D.; Langosch, D.; Huster, D. Biochim. Biophys. Acta. Biomembr. 2020, 1682, 183438. DOI: 10.1016/j.bbamem.2020.183438
16.“Optical Control of Lysophosphatidic Acid Signaling” Morstein, J.; Dacheux, M.; Norman, D.; Shemet, A.; Donthamsetti, P.; Citir, M.; Frank, J.A.; Schultz, C.; Isacoff, E.; Parrill, A.; Tigyi, G.; Trauner, D. J. Am. Chem. Soc. 2020, 142, 10612-10616. DOI: 10.1021/jacs.0c02154
15.“A Lipid Photoswitch Controls Membrane Fluidity and Thickness in Supported Bilayer Membranes” Urban, P.; Pritzl, S.; Ober, M.; Dirsherl, C.; Pernpeinter, C.; Konrad, D.; Frank, J.A.; Trauner, D.; Nickel, B.; Lohmueller, T.* Langmuir. 2020, 36 (10) 2629-2634. DOI: 10.1021/acs.langmuir.9b02942
14. “Optical Control of Sphingosine-1-Phosphate Formation and Function” Morstein, J.; Hill, R.Z.; Novak, A.J.E.; Feng, S.; Norman, D.D.; Donthamsetti, P.C.; Frank, J.A.; Harayama, T.; Williams, B.M.; Parrill, A.L.; Tigyi, G.J.; Riezman, H.; Isacoff, E.Y.; Bautista, D.M.; Trauner, D.* Nature Chem. Biol. 2019, 15, 623-631. DOI: 10.1038/s41589-019-0269-7
13. “Optical Manipulation of Sphingolipid Biosynthesis using Photoswitchable Ceramides” Kol, M.#; Williams, B.#; Toombs-Ruane, H.; Franquelim, H.G.; Korneev, S.; Schwille, P.; Trauner, D.*; Holthuis, J.C.M.*; Frank, J.A.* eLife, 2019, e43230. DOI: 10.7554/eLife.43230
12. “Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Membranes” Urban, P.; Pritzl, S.D.; Konrad, D.B.; Frank, J.A.; Pernpeintner, C.; Roeske, C.R.; Trauner, D.*; Lohmüller, T.*; Langmuir, 2018, 34(44), 13368-13374. DOI: 10.1021/acs.langmuir.8b03241  
11. “Optical Control of L-Type Ca2+ Channels Using a Diltiazem Photoswitch” Fehrentz, T.*; Huber, F.M.E.; Vrielink, N.; Bruegmann, T.; Frank, J.A.; Fine, N.H.F.; Malan, D.; Danzl, J.G.; Tikhonov, D.B.; Sasse, P.; Hodson, D.J.; Zhorov, B.S.; Klöcker, N.*; Trauner, D.* Nat. Chem. Biol. 2018, 14, 764-767. DOI: 10.1038/s41589-018-0090-8  
10. “PhoDAG Enables Optical Control of Diacylglycerol-Sensitive Transient Receptor Potential Channels” Leinders-Zufall, T.; Storch, U.; Bleymehl, K.; Mederos y Schnitzler, M.; Frank, J.A.; Konrad, D.B.; Trauner, D.; Gudermann, T.; Zufall, F.* Cell Chem. Biol. 2017, 25 (2), 215-223. DOI: 10.1016/j.chembiol.2017.11.008  
9. “Synthesis of Photoswitchable Δ9-Tetrahydrocannabinol Derivatives Enables Optical Control of Cannabinoid Receptor 1 Signaling” Westphal, M.V.#; Schafroth, M.A.#; Sarott, R.C.; Imhof, M.A.; Bold, C.P.; Leippe, P.; Mackie, K.; Trauner, D.*; Carreira, E.M.*; Frank, J.A.* J. Am. Chem. Soc. 2017, 139, 18206−18212. DOI: 10.1021/jacs.7b06456  
8. “Optical control of GPR40 signalling in pancreatic β-cells” Frank, J.A.; Yushchenko, D.A.; Fine, N.H.F.; Duca, M.; Citir, M.; Broichhagen, J.; Hodson, D.J.*; Schultz, C.*; Trauner. D.* Chem. Sci. 2017, 8, 7604-7610. DOI: 10.1039/c7sc01475a  
7. “Light-Controlled Membrane Mechanics and Shape Transitions of Photoswitchable Lipid Vesicles” Pernpeintner C.#; Frank, J.A.#; Urban, P.; Roeske, C.R.; Pritzl, S.; Trauner, D.*; Lohmüller. T.* Langmuir. 2017, 33 (16), 4083-4089. DOI: 10.1021/acs.langmuir.7b01020  
6. “Optical Control of Lipid Rafts with Photoswitchable Ceramides” Frank, J.A.; Franquelim, H.G.; Schwille, P.*; Trauner, D.* J. Am. Chem. Soc. 2016, 138 (39), 12981-12986. DOI: 10.1021/jacs.6b07278  
5. Photoswitchable Diacylglycerols Enable Optical Control of Protein Kinase C” Frank, J.A.; Yushchenko, D.A.; Hodson, D.J.; Lipstein, N.; Nagpal, J.; Rutter, G.A.; Rhee, J.S.; Gottschalk, A.; Brose, N.; Schultz, C.*; Trauner, D.* Nat. Chem. Biol. 2016, 12, 755-762. DOI: 10.1038/nchembio.2141  
4. “Synthesis of redshifted azobenzene photoswitches by late-stage functionalization” Konrad, D.B.; Frank, J.A.; Trauner, D.* Chem. Eur. J. 2016, 22 (13), 4364-4368. DOI: 10.1002/chem.201505061  
3. “Photoswitchable Fatty Acids Enable Optical Control of TRPV1” Frank, J.A.; Moroni, M.; Moshourab, R.; Sumser M.; Lewin, G.R.; Trauner, D.* Nature Commun. 2015, 6, 7118. DOI: 10.1038/ncomms8118  
2. “A Red-Shifted Photochromic Sulfonylurea for the Remote Control of Pancreatic Beta Cell Function” Broichhagen, J.; Frank, J.A.; Johnston, N. R.; Mitchell, K.; Smid, K.; Marchetti, P.; Bugliani, M.; Rutter, G. A.; Trauner. D.*; Hodson, D.* Chem. Commun. 2015, 51 (27), 6018-6021. DOI: 10.1039/c5cc01224d  
1. “Optical Control of ​Insulin Release Using a Photoswitchable Sulfonylurea” Broichhagen, J.; Schönberger, M.; Cork, S.; Frank, J.A.; Marchetti, P.; Bugliani, M.; Shapiro, A.M.J.; Trapp, S.; Rutter, G.A.; Hodson, D.J.; Trauner, D.* Nature Commun. 2014, 5, 5116. DOI: 10.1038/ncomms6116  

Reviews & Highlights

6.“Optofluidic neural interfaces for in vivo photopharmacology” Frank, J.A.* Curr. Opin. Pharm. 2022, 63, 102195. DOI: 10.1016/j.coph.2022.102195
5. “Next-Generation Interfaces for Studying Neural Function” Frank, J.A.; Antonini, M-J.; Anikeeva, P.* Nature Biotech. 2019, 37, 1013-1023. DOI: 10.1038/s41587-019-0198-8
4.“Designing Azobenzene-Based Tools for Controlling Neurotransmission” Leippe, P.; Frank, J.A.* Curr. Opin. Struct. Biol. 2019, 57, 23-30. DOI: 10.1016/
3.“Optical Tools for Understanding the Complexity of Beta Cell Signaling and Insulin Release” Frank, J.A.#; Broichhagen, J.#; Yushchenko, D.A.; Trauner, D.; Schultz, C.*; Hodson, D.J.* Nat. Rev. Endocrinol. 2018, 14, 721-737. DOI: 10.1038/s41574-018-0105-2  
2.“Silicon Biointerfaces for All Scales” Park, S.; Frank, J.A.; Anikeeva, P.* Nat. Biomed. Eng. 2018, 2(7), 471. DOI: 10.1038/s41551-018-0268-0  
1.“A Roadmap to Success in Photopharmacology” Broichhagen, J.; Frank, J.A.; Trauner, D.* Acc. Chem. Res. 2015, 48 (7), 1947-1960. DOI: 10.1021/acs.accounts.5b00129